

Conrado de Souza Rodrigues

Efeito da adição de cinza de casca de arroz no comportamento de compósitos cimentícios reforçados por polpa de bambu

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil. Área de concentração: Estruturas.

Orientador: Khosrow Ghavami

Rio de Janeiro Janeiro de 2004

Conrado de Souza Rodrigues

Efeito da adição de cinza de casca de arroz no comportamento de compósitos cimentícios reforçados por polpa de bambu

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Khosrow Ghavami

Presidente/Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Piet Stroeven

Delft University of Technology

Prof. Normando Perazzo Barbosa

Universidade Federal da Paraíba

Prof. Holmer Savastano Junior Universidade de São Paulo

Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil – PUC-Rio

Prof. Fathi Aref Ibrahim Darwish

Departamento de Ciência dos Materiais e Metalurgia - PUC-Rio

Prof. Luiz Eloy Vaz Universidade Federal do Rio de Janeiro

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 14 de janeiro de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Conrado de Souza Rodrigues

Mineiro de Muriaé, graduou-se em Engenharia Civil pela UFOP (Universidade Federal de Ouro Preto) em 1997. Desde 1998 desenvolve trabalhos com materiais de construção não convencionais, tendo defendido a dissertação de mestrado "Mecânica da fratura de compósitos de matrizes rígidas (argamassa) reforçados por fibras de sisal" junto ao Departamento de Engenharia Civil da PUC-Rio em 1999. Além das diversas características dos compósitos com fibras vegetais, tem igual interesse no estudo do bambu e solo cru como componentes estruturais, bem como em aspectos sociais da habitação.

Ficha Catalográfica

Rodrigues, Conrado de Souza

Efeito da adição de cinza de casca de arroz no comportamento de compósitos cimentícios reforçados por polpa de bambu / Conrado de Souza Rodrigues; orientador: Khosrow Ghavami. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2004.

265 f.: il. ; 29,7 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

 Engenharia Civil – Teses. 2. Cinza de casca de arroz.
 Compósitos cimentícios. 4. Fibras vegetais. 5. Materiais de substituição do cimento. 6. Polpa de bambu. 7. Relação porosidade-permeabilidade. I. Ghavami, Khosrow. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD : 624

PUC-Rio - Certificação Digital Nº 9924941/CA

Este trabalho é dedicado à Família e aos Amigos. Fontes inesgotáveis de apoio e motivação; pessoas que dão à vida graça e sentido.

Agradecimentos

É com grande satisfação que vejo chegarem ao fim as atividades desta tese de doutorado; trabalho árduo, mas na maior parte do tempo divertido. Frente à versão impressa completa do trabalho não há como não pensar nas pessoas e instituições que contribuíram de diferentes maneiras nas várias etapas de sua evolução. A elas presto aqui meu mais sincero agradecimento.

Ao Departamento de Engenharia Civil da Pontificia Universidade Católica do Rio de Janeiro, seus professores e funcionários, pela oportunidade de realizar este trabalho em tão conceituada instituição.

Ao professor Khosrow Ghavami, que desde 1998 vem mudando e ampliando minhas concepções de engenharia, agradeço o apoio e confiança.

Ao professor Piet Stroeven, que junto com o professor Ghavami foi responsável pela excepcional experiência na Universidade de Tecnologia de Delft, Holanda, orientando meus trabalhos e possibilitando a realização das atividades experimentais cujos resultados compõem grande parte desta tese.

Ao CNPq, que financiou todo este trabalho, no Brasil e Holanda. Além do aspecto financeiro, agradeço o apoio recebido quando perdido em meio ao emaranhado burocrático dos procedimentos para obtenção dos vistos.

A permanência em Delft só foi possível devido ao apoio do CICAT (*Management Center for International Cooperation*) com os esforços do seu diretor, Paul Althuis, e a paciência dos assistentes Veronique e Durk.

A realização de um trabalho extensivamente experimental depende da cooperação de um grande número de pessoas. Desta forma, agradeço aos técnicos e colegas de laboratório que com boa vontade e criatividade muito contribuíram neste trabalho. No LEM, agradeço ao Evandro, Zé Nilson e Euclides; no ITUC ao Jorge, Bira, Roberto, Luciano e Marques; no DCMM, ao Marcelo Malheiros, Ronaldo e Maurício; no GETEP, ao Eudes; no IME, ao Felipe. Além destes, agradeço aos colegas do grupo de materiais não convencionais, Albanise, Marcos Alyssandro, Flávio, Ângela e Martha. NA TU Delft, pude contar com a colaboração de Dik Dalhuisen, Willem Franken, Plonia Wardenier, Gerald Timmers e Hans Janssen.

Agradeço também ao professor Holmer Savastano Júnior pela acolhida na USP de Pirassununga no início das atividades de tese, ao professor van Breugel por permitir o acesso à infra-estrutura do Microlab na TU Delft, e à indústria Itapagé por fornecer a polpa de bambu empregada neste trabalho.

Agradecimentos emocionados aos meus pais, Raimundo e Bete, que tanto deram de si para minha formação e à Denise, que com amor e companheirismo motivou e inspirou este trabalho. Além destes, agradeço aos meus amigos, pessoas tão caras que tanto me têm ensinado.

Resumo

Rodrigues, Conrado de Souza; Ghavami, Khosrow. Efeito da adição de cinza de casca de arroz no comportamento de compósitos cimentícios reforçados por polpa de bambu. Rio de Janeiro, 2004. 265 p. Tese de Doutorado – Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

Os problemas à saúde acarretados pela exposição às fibras minerais do amianto (asbesto) têm motivado esforços para a substituição destas fibras nos diversos componentes que as empregam como matéria prima. Devido às propriedades físicas e mecânicas e estabilidade química do amianto, bem como sua afinidade natural com a matriz cimentícia, o cimento-amianto é um compósito com excepcionais características de resistência e durabilidade a um custo relativamente baixo. Tais características fazem da busca por um reforço alternativo ao asbesto um desafio, mobilizando indústria e pesquisadores desde a década de 70. Neste contexto, considerando sua disponibilidade e características mecânicas, as fibras celulósicas se mostram como alternativa viável, tendo sido empregadas industrialmente como reforço em fibrocimentos há mais de duas décadas. Entretanto, mesmo com a industrialização, alguns aspectos de seu comportamento, principalmente aqueles relacionados à durabilidade, são ainda foco de intensos esforços de pesquisa (no Brasil, o estudo do emprego de fibras celulósicas como alternativa ao amianto teve início em 79, com os trabalhos pioneiros realizados na PUC-Rio).

Considerando os principais mecanismos causadores de degradação nos fibrocimentos, todos eles relacionados ao transporte de fluidos pela rede porosa do material, tem-se que o principal método empregado para melhoria nas características de durabilidade é a substituição parcial do cimento por aditivos com alto teor de sílica amorfa finamente moídos. As melhores características assim obtidas decorrem de modificações na estrutura da matriz e, principalmente, da interface.

A casca de arroz, é um resíduo agrícola produzido em grande quantidade no Brasil. Quando não empregada como combustível no próprio beneficiamento do arroz ou em outras atividades rurais, a casca de arroz é disposta sem qualquer controle, apresentando-se assim como um problema ambiental. Entretanto, se queimada em condições controladas, a casca de arroz resulta em cinza, CCA, com alto teor de sílica (80-90%) altamente amorfa, apresentando boa reatividade com o cimento. Portanto, a CCA foi empregada neste trabalho como material de substituição parcial do cimento em compósitos reforçados por polpas de bambu, buscando com isso melhorar as características relacionadas à durabilidade destes fibrocimentos.

Foi observado que o emprego de até 30% de CCA com baixo teor de carbono como substituição parcial do cimento resultou em um substancial decréscimo na porosidade da matriz e interface do compósito. Por conseqüência, estes compósitos apresentaram permeabilidade significativamente inferior à daqueles produzidos sem CCA. Com o emprego de CCA com alto teor de carbono (simulando a cinza obtida de queima não controlada, como a realizada no beneficiamento do arroz) é possível obter resultados semelhantes, uma vez que o compósito seja submetido à cura acelerada em autoclave. Neste caso, devem ser empregadas taxas ainda maiores de substituição parcial do cimento por CCA, com os melhores resultados observados em compósitos cujas matrizes compunham-se por 50% da CCA. Além destes aspectos intimamente ligados aos principais mecanismos de degradação dos compósitos, foi observado que a CCA também favorece a aderência interfacial nos compósitos, acarretando em maior resistência mecânica.

Palavras-chave

Cinza de casca de arroz, Compósitos cimentícios, Fibras vegetais, Materiais de substituição de cimento, Polpa de bambu, Relação porosidade-permeabilidade.

Abstract

Rodrigues, Conrado de Souza; Ghavami, Khosrow. Effects of rice husk ash on properties of bamboo-pulp-reinforced cement composites. Rio de Janeiro, 2004, 265 p. DSc. Thesis. Department of Civil Engineering, Pontificia Universidade Católica do Rio de Janeiro.

Asbestos is regarded as a hazardous material since the 60's, motivating the efforts for the replacement of these mineral fibres in the vast range of materials in which they are applied as a raw material. Asbestos-cement was the first building material produced in large scale applying natural fibres as reinforcement in cement-based materials. Due the physical and mechanical behaviour and chemical stability of asbestos fibres, as well as their natural affinity with the cementitious matrix, asbestos-cement presents remarkable strength and durability, associated to a relative low cost. Such characteristics make the search for a suitable replacement to asbestos in fibre-cements a challenge, mobilizing industry and researchers since the early 70's. Considering their availability and mechanical strength, cellulose fibres have proven to be a viable alternative to asbestos, being employed by the industry as reinforcement in fibre-cements for more than two decades. However, in spite of their well established production and commercialization in many parts of the world, some aspects of the cellulose-cement composites behaviour still motivates research efforts, which are mainly focused on durability aspects.

The main deterioration mechanisms acting in cellulose-cement composites are all related to fluid transport within the pore network of the composites and the most applied treatment method is the partial replacement of cement by finely ground admixtures with high active silica content. The improvements in the durability aspects of composites are achieved by modifying the characteristics of the matrix and, mainly, the interfacial region.

Rice husk is an agricultural residue produced in large scale in Brazil. If not applied as fuel in the rice mills or in others rural activities, the rice husk is disposed without control, resulting in an ecological problem. However, the pyrolysis of rice husk yields ash with high silica content, (80-90%). When burned in a proper way, this silica remains amorphous, presenting high reactivity with cement. Due to these characteristics rice husk ash, RHA, is applied in this research as the treatment method in cement composites reinforced by bamboo pulp.

It was observed that blended cement with up to 30% RHA with low carbon content resulted in a significant decrease in the porosity of the matrix and interface of the composite. As a consequence, these blended-cement composites presented water permeability expressively lower than that of the composites produced without RHA. High carbon content RHA was also applied, simulating the use of ash obtained by a non-controlled burning process. Similar results as those observed in composites with low-carbon-content RHA were achieved, once accelerated autoclave curing was applied to the composites. In this case, for better composite properties, higher RHA content must be used, with the best results being observed in composites with 50% RHA. Also, besides these aspects closely related to the main deterioration mechanisms of the composites, it was observed that RHA enhances the fiber-matrix interaction in the interface, improving the mechanical behaviour of the composites.

Keywords

Bamboo pulp, Blended cement, Cement composites, Cement replacement materials, Porosity-permeability relationship, Rice husk ash, Vegetable fibres.

Sumário

1 Introdução	21
2 Revisão bibliográfica	25
2.1. Compósitos com fibras vegetais	25
2.1.1. Fibras vegetais como substituição ao amianto em fibrocimentos	25
2.1.2. Propriedades mecânicas dos fibrocimentos comerciais	26
 2.1.3. Compósitos com reforços celulósicos segundo diferentes procedimentos de produção 	30
2.1.4. Especificidades do comportamento mecânico dos compósitos com fibras celulósicas produzidos pelo processo de Hatschek	33
2.1.5. Durabilidade de compósitos à base de cimento com reforço vegetal	37
2.2. A polpa de bambu	43
2.2.1. Compósitos com polpa de bambu	45
2.3. A cinza de casca de arroz (CCA) como aditivo mineral	45
2.3.1. Aditivos minerais em materiais à base de cimento	46
2.3.2. Reação pozolânica	48
2.3.3. Cinza de casca de arroz como aditivo mineral	51
3 Materiais e métodos	60
3.1. Caracterização da matéria prima	60
3.1.1. Cinza de casca de arroz (CCA)	60
3.1.2. Polpa celulósica de bambu	66
3.1.3. Cimento	68
3.1.4. Sílica amorfa	68
3.2. Produção dos compósitos	69
3.2.1. Construção das formas e implementação do processo de Hatschek modificado	70
3.2.2. O processo de moldagem das placas	75
3.2.3. Relação a/c nos compósitos	79
3.2.4. Condições de envelhecimento dos compósitos	80
3.2.5. Constituição e esquema de nomenclatura dos compósitos	82
4 Porosidade e permeabilidade de compósitos com CCA	85
4.1. Estudo da porosidade	85
4.1.1. Aspectos da porosidade em materiais cimentícios	85
4.1.2. Estudo experimental da estrutura porosa de pastas de cimento e compósitos	93
4.2. Modelos para permeabilidade baseados nos resultados dos testes MIP	107
4.2.1. Aspectos do modelamento da permeabilidade	107

4.2.2. Aplicação dos modelos às pastas e compósitos com CCA	114
4.3. Determinação experimental da permeabilidade	127
4.3.1. Preparação das amostras e montagem do sistema	128
4.3.2. Métodos para determinação da permeabilidade	129
4.3.3. Aplicação da metodologia na determinação da permeabilidade dos compósitos	131
4.4. Conclusões	140
4.4.1. Análise da porosidade por MIP	140
4.4.2. Modelos para permeabilidade	142
4.4.3. Determinação experimental da permeabilidade	142
5 Índices físicos e comportamento mecânico	144
5.1. Metodologia	144
5.1.1. Determinação dos índices físicos	144
5.1.2. Determinação dos parâmetros mecânicos	145
5.2. Análise dos índices físicos	147
5.2.1. Indices físicos de pastas e compósitos com CCA	147
5.2.2. Compósitos com adição de microssílica	157
5.3. Comportamento mecânico	159
5.3.1. Metodologia de ensaios	159
5.3.2. Pastas de cimento com adição de CCA	160
5.3.3. Compósitos com adição de CCA	161
5.3.4. Compósitos com adição de microssílica	179
5.4. Modelamento do comportamento mecânico	185
5.4.1. Considerações acerca de dados da literatura	185
5.4.2. Aplicação da regra das misturas aos dados da literatura	189
5.4.3. Regra das misturas para o cálculo do MOR do cimento-amianto	190
5.4.4. MOR de compósitos com polpas celulósicas pela regra das misturas	190
5.4.5. Aplicação da regra das misturas aos compósitos com CCA	194
5.5. Conclusões	199
5.5.1. Indices físicos	199
5.5.2. Comportamento mecânico	200
5.5.3. Modelamento do comportamento mecânico	204
6 Constituição dos compósitos em estágio avançado da hidratação	207
6.1. Análise termogravimétrica	207
6.1.1. Emprego de TG ao estudo de materiais à base de cimento	207
6.1.2. Emprego da TG aos compósitos	209
6.2. Análise por microscopia eletrônica de varredura (MEV)	216
6.3. Conclusões	222
7 Conclusões e sugestões	223
7.1. Conclusões	223
7.1.1. Porosidade e permeabilidade	223

7.1.2. Comportamento físico e mecânico dos compósitos	224
7.1.3. Aspectos da durabilidade	226
7.2. Propostas para trabalhos futuros	228
7.2.1. Emprego de CCA como aditivo mineral	228
7.2.2. Comportamento mecânico	229
7.2.3. Estudo da durabilidade	229
7.2.4. Compósitos de baixo custo e baixo consumo de energia	235
Referências bibliográficas	236
Apêndice A: curvas tensão x deflexão	250
Apêndice B: Resultados originais dos testes MIP	262

Lista de figuras

 Figura 1: A transformação do bambu durante o processo de polpação: (a), (b) e (c) fase de picagem/classificação; (d) após o cozimento e refino. 	44
Figura 2: Dist. Granulométrica cimento das CCAs	62
Figura 3: Dist. Granulométrica cimento Portland ASTM-I (Zhang et al. 1996)	63
Figura 4: Análise de difração de raios-X das CCAs	66
Figura 5: Distribuição do tamanho das fibras na polpa de bambu	67
Figura 6: Distribuição granulométrica da microssílica	69
Figura 7: Furadeira de bancada e as hastes com hélice empregadas na dispersão da polpa e mistura do material.	71
Figura 8: As partes inferior e superior do molde 120x120 mm2	71
Figura 9: Os moldes 120x120 e 400x400 mm2.	72
Figura 10: Superfície superior da câmara de vácuo.	72
Figura 11: Detalhes do fechamento da forma e do esquema de filtragem	73
Figura 12: Detalhes do recipiente adaptado para o armazenamento da água retirada durante a moldagem.	73
Figura 13: Sistema bomba de vácuo-recipiente de armazenamento	74
Figura 14: Polpa de bambu antes e após a dispersão	76
Figura 15: Fase de retirada de água da mistura através do vácuo	76
Figura 16: Placa após a retirada da água através da aplicação de vácuo.	77
Figura 17: Compactação de uma placa 400 x 400 mm2.	78
Figura 18: Placas 400x400 e 120x120 mm2 após a cura.	78
Figura 19: Placas 400 x 400 mm2 expostas ao ambiente na PUC-Rio	80
Figura 20: Placas 400 x 400 mm2 expostas ao ambiente na PUC-Rio	81
Figura 21: classificação dos poros na pasta de cimento	87
Figura 22: Efeitos do ângulo de contato na interação fluido-capilar	88
Figura 23: Repetição dos testes de intrusão da matriz com CCA-II	95
Figura 24: Repetição dos testes de intrusão do compósito com CCA-III	95
Figura 25: Curvas de intrusão das matrizes sem reforço	97
Figura 26: Curvas de intrusão da matriz e do comp. sem adição de CCA	99
Figura 27: Curvas de intrusão da matriz e do compósito com 15% CCA-II	100
Figura 28: Curvas de intrusão da matriz e do compósito com 30% CCA-II	101
Figura 29: Curvas de intrusão dos compósitos com incorporação de CCA-I	102
Figura 30: Curvas de intrusão dos comp. com incorporação de CCA-II	102
Figura 31: Curvas de intrusão dos comp. com incorporação de CCA-III	105
Figura 32: inf. cura com autoclave nos comp. com incorporação de CCA-I	106
Figura 33: inf. cura com autoclave nos comp. com incorporação de CCA-II	107
Figura 34: Dependência entre a conectividade dos poros com o grau de hidratação e a relação a/c. Garboczi e Bentz (1996).	110

Figura 35:	Comparação entre as permeabilidades das matrizes calculadas pelos métodos analíticos	107
Figura 36:	Res.modelos analíticos para permeabilidade onde dc \approx 0,1 μm	121
Figura 37:	Res. modelos analíticos para permeabilidade onde dc \approx 0,4 μm	121
Figura 38:	Res. modelos analíticos para permeabilidade onde dc $\approx 5~\mu m$	122
Figura 39:	Divisão da estrutura porosa dos compósitos na aplicação das modificações propostas para os modelos analíticos.	126
Figura 40:	Permeabilidades calculadas pelo modelo modificado	127
Figura 41:	preparação da amostra e sua montagem na célula de difusão	130
Figura 42:	Resp. dos diferentes comp. à pressão no topo de 1800kPa	134
Figura 43:	Resp. dos diferentes comp. à pressão no topo de 1500kPa	134
Figura 44:	Resp. dos diferentes comp. à pressão no topo de 1000kPa	134
Figura 45:	Transm. pressão no CP0 sob p. conf.de 2000 e 3000 kPa	135
Figura 46:	Distr. pressão na base da amostra CP0 devido ao ΔP no topo	136
Figura 47:	Distr. P. base da amostra CP30-II devido ao ΔP no topo	136
Figura 48:	Distr. P. base da amostra CP30-IIA devido ao ΔP no topo	136
Figura 49:	Distr. P. base da amostra CP30-III devido ao ΔP no topo	137
Figura 50:	comparação entre o modelo C-C* e os métodos experimental direto e numérico-experimental	138
Figura 51:	Comparação entre as curvas de int. CP30-IIA e CP30-III	139
Figura 52:	Comparação entre as estruturas porosas dos comp. analisados	141
Figura 53:	Espécimes de flexão obtidos da placa de compósito.	145
Figura 54:	Teste de flexão em um dos espécimes	146
Figura 55:	Parâmetros do comportamento mecânico dos compósitos determinados nos testes de flexão	147
Figura 56:	Índices físicos de pastas e compósitos NU	149
Figura 57:	Comparação entre porosidades det. métodos MIP e absorção	150
Figura 58:	Comparação entre densidades det. métodos MIP e absorção	150
Figura 59:	Efeitos da cura em autoclave nos índices físicos dos comp.	152
Figura 60:	Efeitos dos ciclos de env. 1 nos índices físicos dos comp. NU	154
Figura 61:	Var. da Abs. em estágios intermediários dos ciclos de env.	155
Figura 62:	Efeitos dos ciclos de env. 2 nos índices físicos dos comp. NU	156
Figura 63:	Efeitos dos ciclos de env. nos índices físicos dos comp. AU	157
Figura 64:	Índices físicos dos compósitos com microssílica	159
Figura 65:	Parâmetros mecânicos de compósitos e pastas de cimento	163
Figura 66:	Propriedades mecânicas dos compósitos NU testados na condição de equilíbrio (55% R.U., 23° C)	165
Figura 67:	comparação entre propriedades mecânicas obtidas de compósitos NU em equilíbrio e saturados	167
Figura 68:	Propriedades mecânicas de compósitos submetidos à cura normal e autoclave	170
Figura 69:	Propriedades mecânicas de compósitos sem envelhecimento (NU) e envelhecidos (NA) pelos ciclos 1.	172
Figura 70:	Propriedades mecânicas de compósitos sem envelhecimento (NU) e envelhecidos (NA) pelos ciclos 2.	173
Figura 71:	Prop. mecânicas dos comp. NA testados em eq. e sat.	174

Figura	72:	propriedades mecânicas de compósitos submetidos aos dois ciclos de envelhecimento	175
Figura	73:	Propriedades mecânicas dos compósitos curados em autoclave e submetidos ao envelhecimento acelerado	177
Figura	74:	Propriedades mecânicas do CP50-II AU e CP50-II-AA nas condições de equilíbrio e saturado	178
Figura	75:	Propriedades mecânicas de compósitos com adição de microssílica, NU e NA	180
Figura	76:	Comportamento mecânico dos compósitos submetidos ao envelhecimento natural.	183
Figura	77:	Variação do MOE com Vf de compósitos da literatura	187
Figura	78:	Variação da porosidade com Vf de compósitos da literatura	188
Figura	79:	Variação do MOE com Vf de compósitos da literatura	188
Figura	80:	Distribuições de MOR com Vf experimentais e obtidas pela regra das misturas.	192
Figura	81:	Variação de MOR com If - resultados experimentais e previsões pela regra das misturas	193
Figura	82:	Variação de MOR com If - resultados experimentais e previsões pela regra das misturas	193
Figura	83:	Tensões de aderência nos compósitos antes e após envelhecimento, NU e NA	197
Figura	84:	Tensões de aderência nos compósitos com cura em autoclave	198
Figura	85:	Tensões de aderência dos compósitos submetidos ao envelhecimento natural no laboratório (Int.) e expostos ao ambiente (Exp.)	198
Figura	86:	Decomposição térmica do CP0 NU	211
Figura	87:	Decomposição térmica do CP15-II NU	211
Figura	88:	Decomposição térmica do CP30-II NU	212
Figura	89:	Decomposição térmica do CP15-III NU	212
Figura	90:	Decomposição térmica do CP30-II AU	213
Figura	91:	Comparação entre as perdas de massa dos compósitos	214
Figura	92:	Imagens das regiões dos compósitos empregadas nas análises de composição por EDS	217
Figura	93:	Composição do CP0 NU obtida por EDS	218
Figura	94:	Espectro EDS do CP0 NU	218
Figura	95:	Composição do CP15-II NU obtida por EDS	219
Figura	96:	Espectro EDS do CP15-II NU	219
Figura	97:	Composição do CP15-III NU obtida por EDS	220
Figura	98:	Espectro EDS do CP15-III NU	220
Figura	99:	Composição do CP15-II AU obtida por EDS	221
Figura	100): Espectro EDS do CP15-II AU	221
Figura	101	: Esquema para a determinação da vida útil de materiais de construção (Sjöström, 1985 e Eurin et al. 1985)	232

Lista de tabelas

Tabela 1: Limites mínimos de resistência à flexão especificados por norma para placas planas de fibrocimentos	10
Tabela 2: Propriedades físicas e mecânicas de compósitos comerciais	11
Tabela 3: composição química das CCAs e cimento empregados nos compósitos	61
Tabela 4: Índices de atividade pozolânica e área de superfície específica das CCAs submetidas a diferentes períodos de moagem	64
Tabela 5: Constituição das placas 400 x 400 mm2	83
Tabela 6: Constituição das placas 120 x 120 mm2	84
Tabela 7: Características obtidas dos testes de intrusão por mercúrio	94
Tabela 8: Cálculo da permeabilidade com base nos diferentes modelos considerados	116
Tabela 9: Permeabilidades dos compósitos calculadas para dc \approx 0,1 μm (condição 1)	123
Tabela 10: Permeabilidades dos compósitos calculadas para dc \approx 0,4 μm (condição 2)	123
Tabela 11: Permeabilidades dos compósitos calculadas para dc $\approx 5~\mu m$ (condição 3)	124
Tabela 12: Permeabilidades dos compósitos calculadas pelo modelo modificado	124
Tabela 13: Permeabilidades calculadas segundo o método direto	132
Tabela 14: Resultados do método numérico-experimental	137
Tabela 15: Índices físicos de pastas e compósitos sem envelhecimento	148
Tabela 16: Índices físicos dos compósitos submetidos aos ciclos de env.	153
Tabela 17: Índices físicos dos compósitos com microssílica	158
Tabela 18: Propriedades mecânicas de pastas e compósitos NU	161
Tabela 19: Propriedades mecânicas dos compósitos AU	169
Tabela 20: Propriedades mecânicas dos compósitos NA, ciclos 1 e 2.	171
Tabela 21: Propriedades mecânicas dos compósitos AA.	176
Tabela 22: Prop. mecânicas dos comp. com microssílica, NU e NA.	180
Tabela 23: Propriedades mecânicas dos compósitos com microssílica com envelhecimento natural	182
Tabela 24: Tensões de aderência interfacial estimadas com base na regra das misturas	196
Tabela 25: Perdas de massa nos estágios de decomposição dos compósitos	210
Tabela 26: Composição dos compósitos com base nos resultados de termogravimetria	215
Tabala 27: Composição do óxidos pos compósitos	222

А	Α=(1- φ _c)/ φ _c
a/c	Relação água cimento (ou relação água/aglomerante)
Abs.	Absorção de água
b	Largura dos espécimes, 38 mm
С	Constante do modelo de Katz-Thompson para permeabilidade, 1/226
d	Diâmetro dos poros dado pela equação de Washburn
D	Densidade dos espécimes
d _c	Diâmetro característico da rede porosa, determinado pelas curvas de intrusão dos testes MIP
d ^e _{máx}	Diâmetro da rede porosa que produz condutância máxima (adotado 0.34.d _c)
df	Diâmetro das fibras celulósicas
EE	Energia específica, área sob a curva carga vs. deflexão até 40% da carga referente a MOR na fase pós pico
Ef	Módulo de elasticidade das fibras na regra das misturas
Em	Módulo de elasticidade da matriz na regra das misturas
K	Permeabilidade intrínseca definida pela equação de D'Arcy
k	Coeficiente de permeabilidade (depende das características do
	fluido permeante)
K _{CSH}	Permeabilidade do C-S-H, adotado 7.10 ⁻²³ m ²
K _H	Permeabilidade da fase mais permeável na equação do meio
	efetivo (modelo Cui-Cahyadi)
KL	Permeabilidade da fase menos permeável na equação do meio
	efetivo (modelo Cui-Cahyadi)
L	Dimensão da amostra do meio poroso segundo a quai se da o fluxo laminar
	Comprimento das fibras celulósicas
LOP	Limite de proporcionalidade, tensão máxima da fase linear do carregamento de flexão
M_{eq}	Massa dos espécimes acondicionados em ambiente a 23º C e 55% RH
M _f	Massa de fibras
MOE	Módulo de elasticidade na flexão, determinado na fase elástica do carregamento de flexão
MOR	Módulo de ruptura, tensão máxima na face tracionada durante os testes de flexão
M _{sat}	Massa dos espécimes saturados
M_{sec}	Massa dos espécimes secos em estuda a 100° C
M_{sub}	Massa dos espécimes saturados determinada com os mesmos
P	a) Tensão anlicada ao mercúrio nos testes MIP
1	 h) Carga anlicada nos testes de flexão
Por	Porosidade determinada por absorcão de água
0. I	Fluxo pela rede porosa calculado pela equação de D'Arcv
s S	Distância entre os apoios na configuração dos testes de flexão em
5	três pontos, 100 mm
S(d ^e _{máx})	Porosidade composta por poros maiores que d ^e _{máx}
t	a). Expoente da equação do meio efetivo, adotado como 2

	 b). Espessura dos espécimes submetidos aos testes de flexão
V_{CH}	Volume de Ca(OH) ₂
V_{CSH}	Volume de C-S-H
V _f	Fração volumétrica de fibras
V_{nH}	Volume de produtos (de hidratação) não hidratados
ΔP	Variação de pressão nas extremidades da amostra sujeita a fluxo
	laminar nos testes de permeabilidade
α	Grau de hidratação
φ	 a). Porosidade total no modelo Katz-Thompson
	 b). Porosidade da fase mais permeável na equação do meio efetivo
	(modelo Cui-Cahyadi)
φ´c	Fração volumétrica crítica do C-S-H, adotado 17%
φ _c	Porosidade crítica abaixo da qual a interconectividade entre os
	poros diminui expressivamente, 18%
фсѕн	Fração volumétrica do C-S-H
γ	Tensão superficial do mercúrio empregado nos testes MIP (adotado
	0,1 Pa)
η	 a). Viscosidade do fluido permeante nas equações de
	permeabilidade
	 b). Fator de eficiência empregado nas equações da regra das
	misturas
$\eta\tau_{\text{mec}}$	Indice global relacionado a aderencia interfacial na fase de
	arrancamento (aderencia mecanica)
ηau_{qui}	Indice global relacionado a aderencia interfacial na fase elastica do
0	carregamento (aderencia química)
θ	a). Angulo de contato entre o mercuno e as paredes da rede porosa
	h) Inclinação da reta carga ve. deflevão na fase linear do
	carregamento à flevão
0	Densidade do fluido permeante
р Ф	Tensão na face tracionada dos espécimes submetidos aos testes
Ob	de flexão
σau	Resistência à tração dos compósitos
ο cu σ	Resistência à tração das fibras
σ_	Resistência à flexão da matriz
oπ σ/σ	Condutividade relativa, relação entre a condutividade elétrica de um
0,00	meio σ saturado por um fluido de condutividade σ_{0}

 $\begin{array}{l} \mbox{meio, σ, saturado por um fluido de condutividade σ_0} \\ \tau & \mbox{Tensão de aderência na interface fibra matriz} \end{array}$

A resposta certa, não importa nada: o essencial é que as perguntas estejam certas.

Mário Quintana, no Caderno H